		MANAGE PARTY OF THE PARTY OF TH
--	--	--

Reg.	No.	:	***************************************

K20U 0883

10. If Sis a closed sinface enclosing a volume & cubic unit spd if IV Semester B.Sc. Degree (CBCSS-Reg./Sup./Imp.) Examination, April 2020 (2014 Admn. Onwards) COMPLEMENTARY COURSE IN MATHEMATICS 4C04MAT-PH: Mathematics for Physics and Electronics – IV

Time: 3 Hours

ranges polynomial for the following data: y (1) = (Max. Marks: 40

SECTION - A

do the number of 13, Use traperoidal rule to evaluate 12 All the first 4 questions are compulsory. They carry 1 mark each.

- 1. Write the parametric representation of the circle $x^2 + y^2 = 4$.
- 2. Evaluate $\int x^2 dy + y^2 dx$ where C is the path y = x from (0, 0) to (1, 1).
- 3. Give the Newton Raphson Formula to find a root of the equation.
- 4. Write the general formula to find the numerical solutions of ordinary differential equations using Euler's method. $(4 \times 1 = 4)$ $6xy + z^{-1} + (3x^{2} - z)) + (3xz^{2} - y)k$

SECTION - B

Answer any 7 questions from among the questions 5 to 13. These questions carry 2 marks each.

- 5. Find the gradient of $f(x, y, z) = ye^{xz} + z^3$ at (0, 2, 3).
- 6. Find div curl \vec{F} , where $\vec{F} = xz^3\hat{i} 2x^2yz\hat{j} + 2yz^4\hat{k}$.
- 7. Find the arc length of the curve $\overline{r}(t) = a \cos t \hat{i} + a \sin t \hat{j}$ from t = 0 to $t = \pi$.
- 8. Evaluate by Stoke's theorem $\int_0^1 yz dx + zx dy + xy dz$, where c is the curve $x^2 + y^2 = 1$.
- 9. Evaluate $\int_{c} (x-2y)dx + (3x-y)dy$ where c is a unit square.

K20U 0883

- 10. If S is a closed surface enclosing a volume 3 cubic unit and if $\vec{F} = x\hat{i} + 2y\hat{j} + 3z\hat{k}$, then evaluate $\iint \vec{F} \cdot \hat{n} ds$.
- 11. Find a real root of the equation $f(x) = x^3 x 1 = 0$ that lies between 1 and 1.5 using bisection method correct to 2 decimal places.
- 12. Find a Lagranges polynomial for the following data : y(1) = 1 y(3) = 27, y(4) = 64.
- 13. Use trapezoidal rule to evaluate $\int_0^{e^{x^2}} dx$ by taking the number of intervals as 10. (7×2=14)

SECTION - C k dy't y ak where o is to e neithy't y neight with

Trailing barantair or consineasing or tempted and shall

equations using Euler's method.

Answer any 4 questions from among the questions 14 to 19. These questions carry 3 marks each.

- a viville trie gerfaret tolheid a lichhöldheid rithioritic 14. Find the potential function for $\vec{F} = (6xy + z^3)\hat{i} + (3x^2 - z)\hat{j} + (3xz^2 - y)\hat{k}$.
- 15. Show that $\int_{0.5}^{(3,2)} 3x^2e^y dx + x^3e^y dy$ is independent of the path. Hence evaluate the integral. Mosa existin 0
- 16. Using Regula Falsi method find a root of the equation $2x = log_{10}x + 7$ that lies between 3 and 4, correct to 3 decimal places.
- 17. Compute $\int_{1}^{1} \frac{1}{1+x^2} dx$ using Simpson's $\frac{1}{3}^{rd}$ rule with step size h = 0.25.
- 18. Solve the equation $y^1 = x + y^2$, subject to the condition y = 1, when x = 0 using
- 19. Use Euler method with h = 0.025 to compute the value of y(0.1) for $y^1 = x y^2$, y(0) = 1. $(4 \times 3 = 12)$

Answer any 2 questions from among the questions 20 to 23. These questions carry 5 marks each.

- 20. Find a unit vector in the direction along which the function $f(x, y) = 4x^3y$ is increasing rapidly at (-1, 1).
- 21. Evaluate the surface integral $\iint_s \vec{F} \cdot \hat{n} \, ds$ where $\vec{F} = [x^2, 0, 3y^2]$ and S is the portion of the plane x + y + z = 1 in the first octant.
- 22. Use Newtons interpolation formula to estimate the value of sin8° from the following data:

 θ 5 10 15 20 25 30 $\sin\theta$ 0.0871 0.1736 0.2588 0.3420 0.4226 0.5

23. Use Runge-Kutta method of order four to find y(0.1) and y(0.2) correct to four decimal places, given $\frac{dy}{dx} = y - x$ where y(0) = 2. (2×5=10)